Peering into Potato-Virus Interactions in the Era of Omics

Primary author: Manasseh Richard
Co-author(s): Madhu Kappagantu; Lindani Moyo; Hanu R. Pappu
Faculty sponsor: Prof. Hanu R. Pappu

Primary college/unit: Agricultural, Human and Natural Resource Sciences
Campus: Pullman

Abstract:

Potato is an important staple food crop worldwide. The tuber is especially prized for its high nutritional value, while also offering vital economic benefits. In the U.S., the Pacific Northwest produces nearly 60% of the nation’s potato annually, and potato industry in WA state alone is worth several billions of dollars. However, potato production is curtailed by several viruses, with the most devastating being Potato virus Y (PVY). At least nine biological variants of PVY are known to attack potato. These include relatively newer recombinant types named PVYNTN and PVYNWilga, which induce tuber necrosis in susceptible cultivars. So far, the underlying host-virus interactions have been studied by analysis of gene expression, while the metabolic level, which often correlates poorly with gene expression but directly mediates these phenotypic outcomes, is poorly studied. To assess how PVYNTN and PVYNWilga infections affect potato metabolism, we used GC-MS to obtain comprehensive metabolic profiles of two cultivars inoculated with these recombinants of PVY. A total of 447 peaks were detected, 115 of which were known metabolites that categorized into amino acids, sugars and sugar derivatives, esters and lactones, organic acids, alcohols, ketones and phenols, and sulfur-nitrogen compounds. Using a mix of univariate and multivariate methods, we showed that PVYNTN and PVYNWilga elicit significantly different metabolic alterations in potato. Multivariate receiver-operator characteristic (ROC) curves predicted Dioctyl phthalate, Sedoheptulose, Glycine, 1-Monopalmitin, Ribulose-5-phosphate, Trehalose, Glycerol 3-phosphate, Alpha-Tocopherol, 5-Methoxytryptamine, Sorbitol, Glucose-6-phosphate, Galactinol, L-Malic acid, and Threonic acid as potential metabolite biomarkers of PVYNTN and PVYNWilga infection in potato.